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A B S T R A C T

The development of nanoprobes with high sensitivity and specificity for tumor marker detection has gained
increasing attention in biological applications. Here, we have designed and synthesized a novel 4,4',4”,4”'-
(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis (1-(4-bromobenzyl)pyridin-1-ium) bromide (TPE-
4N+) based aggregation induced emission (AIE) fluorescent sensor and it gives rise to electrostatic adsorption
towards hyaluronic acid (HA), resulting in an effective emission recovery in yellow-greenish region. In the
presence of hyaluronidase (HAase), the enzymatic digestion between HA and HAase induces the fluorescence
quenching and this “on-off” change has been analyzed by two consecutive linear equations. The low detection
limit is determined to be 0.02 U/mL by quantitative evaluation and its practical application has been verified by
detecting human urine samples. It is promising that this new approach can be utilized to study a wide variety of
other depolymerization reactions.

1. Introduction

As a polymeric host with excellent water solubility, hyaluronic acid
(HA), an anionic glycosaminoglycan, is composed of repeating d-glu-
curonic acid and N-acetyl-d-glucosamine and exists in human tissues or
living cells [1]. Hyaluronidase (HAase) plays an essential role for de-
grading HA in the process of cancer cell metastasis. It has been in-
vestigated that HAase is relevant to a variety of physiological and pa-
thological processes, including embryogenesis, inflammation, wound
healing and over express in certain patients with cancers (such as
bladder, colon or prostate) [2]. Therefore, the evaluation of HAase
activity in cells has received considerable interests since it may be
served as a tumor marker [3,4]. Traditional methods for hyaluronidase
detection like turbidimetry [5], viscosimetry [6] and colorimetry [7]
have been studied. However, many of these approaches have relatively
poor selectivity, low sensitivity, and require relatively complicated
devices. Therefore, it will be of great significance to develop simple,

rapid, and sensitive methods for detection of HAase.
Aggregation induced emission (AIE) is an unexpected fluorescent

effect (a type of propeller-shaped molecule, which emits faintly in their
solutions but fluoresce intensely in the aggregated state), which was
reported in year 2001 [8]. Among the AIE luminogens, tetra-
phenylethene (TPE) and its derivatives have been extensively studied
because of their simple synthetic routes, easy functionalization, notable
AIE performance and high fluorescence quantum yield [9–14]. They
have been grafted onto organic compounds and covalent polymers
working as functional building blocks, fluorescent sensors or solid-state
materials during the past decades [15–18]. Especially in the field of
chemical and biological detection, various AIE based fluorescent probes
were designed and prepared for sensitively detection of metal ions,
sugars, proteins or anions and so on [19–23].

Here, we have synthesized a novel AIE molecule (TPE-4N+) using a
simple one-step substitution reaction between tetrakis(4-pyridylphenyl)
ethylene and 4-bromobenzyl bromide. Subsequently, HA was attached
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to the surface of TPE-4N+ molecule via their electrostatic interactions
to assemble the uniform nanoparticles (TPE-HA). The aggregated TPE-
HA displayed a strong emission at 536 nm in the aqueous solution,
while its fluorescence was dramatically suppressed upon addition of
HAase. The results showed that HAase could be specific and effectively
degrade HA and reduce the electrostatic interactions between TPE-4N+

and HA. This charge change can induce the disassembly of TPE-HA,
leading to the fluorescence quenching in the system. The luminescence
evolution can be realized with bare eye observation under the irra-
diation of a portable UV lamp. Hence, TPE-HA can be applied as a nano-
chemosensor for the detection of HAase in the aqueous solution (Fig. 1).
It is anticipated that the nanoprobe could be acted as a diagnostic and
monitoring material under biological and environmental conditions.

2. Experimental sections

2.1. Reagents and materials

Tetrakis (4-pyridylphenyl) ethylene (98%), 4-Bromobenzyl bromide
(98%), dichloromethane (99.9%), acetonitrile (99.9%), hyaluronic acid
(HA, 97%), hyaluronidase (HAase, 308 U/mg), glutathione (GSH,
98%), L-cysteine (Cys, 99%), homocysteine (Hcy, 95%), glutamic acid
(Glu, 99%), ascorbic acid (AA, 98%), alkaline phosphatase
(ALP,> 10,000 U/L), urea (UA, 99%), vitamin B1 (VB1, 99%) and
bovine serum albumin (BSA, 98%) were purchased from Aladdin
Chemistry Co. Ltd. Metal salts such as Copper chloride (CuCl2), Ferric
chloride (FeCl3), Zinc chloride (ZnCl2), Magnesium chloride (MgCl2)
were purchased from Guangzhou Chemical Reagent Factory and used
without further purification.

2.2. Apparatus

1H NMR spectra were recorded on a Bruker Avance 400MHz NMR
Spectrometer (Bruker, Karlsruhe, Germany). TEM images were ob-
tained with a JEOL JEM-2100HR transmission electron microscope
(Hitachi Ltd, Japan). The particle size distribution and Zeta potentials
was determined by Malvern Nano-ZS90 were acquired by a particle size
analyzer and ZetaPlus Zeta Potential Analyzer (Malvern Instruments
Ltd, United Kingdom). UV–vis spectra were recorded on TECHCOMP
spectrophotometer in the range of 230–600 nm with a slit of 2 nm
(TECHCOMP Ltd, Shanghai, China). Fluorescence and excitation
spectra were measured using a Hitachi F-7000 fluorescence

spectrophotometer with a 150W xenon lamp as a light source (Hitachi
Ltd, Japan). All error bars represent standard deviations from three
repeated experiments.

2.3. Synthesis and characterization of TPE-4N+

Tetrakis(4-pyridylphenyl)ethylene (0.156mmol, 100mg) and 4-
bromobenzyl bromide (0.624mmol, 282.2 mg) were dissolved in the
mixture solution of CH3CN (25mL) and CH2Cl2 (25mL). Then, the
mixture was refluxed at 120 ℃ for 3 days under N2 atmosphere. The
reaction mixture was concentrated by rotary evaporation and washed
using dichloromethane for several times. A yellow powder was obtained
by filtration, and dried under vacuum at room temperature for 8 h. The
structure and synthesis procedure of TPE-4N+ were shown in Fig. S1.
1H NMR (400MHz, dDMSO) δ (ppm) 9.19–9.17 (8H, d, J= 8Hz),
8.49–8.47 (8H, d, J= 8Hz), 7.98–7.96 (8H, d, J= 8Hz), 7.68–7.66
(8H, d, J= 8Hz), 7.52–7.50 (8H, d, J= 8Hz), 7.36–7.33 (8H, d,
J= 12 Hz), 5.80 (8H, s) (Fig. S2).

2.4. HAase detection based on the TPE-HA Nanosystem

For HAase detection in aqueous solution, TPE-4N+ (1 μM) and HA
(0.15 μgmL−1) were mixed with different amounts (0–5 U/ml) of
HAase in 1mL of pure water solution in a spectrophotometer quartz
cuvette. After incubation at 37 °C for 100min, the spectra were mea-
sured and collected by a fluorescence spectrophotometer excited at
348 nm. For comparison purpose, control experiments were performed
by replacing HAase with other interfering analytes GSH, Cys, Hcy, Glu,
AA, UA, VB1, BSA, CuCl2, FeCl3, ZnCl2, MgCl2 (10 μM) or 0.1 U/mL ALP
under identical conditions.

2.5. Detection of HAase in urine samples

Human urine samples from two healthy people were provided by
Guangdong Provincial Hospital of Chinese Medicine (Guangzhou,
China). The urine samples were purified by high centrifugation
(12,000 rpm) for 10min, then the supernatant was transferred into the
several vials (2 mL) and adjusted to pH=4.3 (NaH2PO4, Na2HPO4 and
NaCl buffer). For HAase detection in urine samples, the fluorescence
measurements were recorded for the samples containing TPE-HA na-
nosystem (TPE-4N+ 1 μM, HA 0.15 μgmL−1). The emission intensity at
536 nm was measured and the concentration of HAase was calculated

Fig. 1. Schematic illustration of TPE-HA based fluorescence nanoprobe for detection of HAase.
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by using the linear calibration equation. Various volumes of the stan-
dard HAase were added into the corresponding vials to obtain the dif-
ferent final concentrations (1.0, 2.0 and 5.0 U/mL). Then the con-
centrations of HAase in urine specimens were studied based on the
same procedure as mentioned above.

3. Results and discussion

3.1. UV analysis

All chemical species interact with the external light inputs and we
are able to establish the relationship between absorbed energy and
characteristic structural changes by measuring the absorption spectra.
Herein, the UV–vis absorption curves of TPE-4N+, TPE-HA and TPE-HA
+ HAase were studied in aqueous solution. As provided in Fig. 2A, TPE-
4N+ have two absorption bands centered at 286 and 363 nm, which are
attributed to the π-π* local electron transitions of the phenyl and pyr-
idine rings conjugate system. After HA was added into the solution of
TPE-4N+, the absorption peak corresponding to the TPE-4N+ at
286 nm was decreased slightly and the peak at 363 nm gave rise to a
slight blue-shift to 354 nm which might be derived from the formation
of TPE-HA nano-aggregates. In the presence of HAase at different
concentrations, the absorption peak at 354 nm decreased dramatically.
The band at 286 nm was shifted to a short wavelength of 277 nm and
the intensity gradually increased (Fig. 2B). The collected results sug-
gested that the hydrolysis of HA might induce the disassembly of na-
nostructures.

3.2. Fluorescence studies

In general, the solution studies will facilitate the fundamental ex-
ploration of photophysical processes at molecular level. Luminescence
signal is closely related to molecular aggregation status and emission is
frequently quenched at high concentrations. The fluorescence feature of
the TPE-4N+ in the solution state was investigated by the steady state
fluorescence spectroscopy. As shown in Fig. 3, TPE-4N+ showed intense
yellow emission at 580 nm in pure DMSO, which was caused by the
intramolecular charge transfer (ICT) [24]. When the water content was
increased, the emission intensity of TPE-4N+ was suppressed step by
step. At a high water fraction (99.9%), the light emission was almost
quenched. However, further aggregation significantly improved emis-
sion efficiency of the organic chromophore. As described in Fig. S3,
TPE-4N+ was weakly emissive in its dilute aqueous solution. Its powder
material demonstrated bright yellow luminescence under irradiation at
365 nm. This was considered to be caused by aggregation formation
and an increase in luminescence outputs was achieved [25].

The assembly between TPE-4N+ and HA was also investigated by
spectrometric titration. As shown in Fig. S4, TPE-4N+ (1 μM) was
faintly emissive at 580 nm due to its excellent water solubility. After the
addition of HA solution (0.05 μgmL−1), TPE-4N+ can react with HA to
form the uniform nanoparticles through electrostatic interaction. The
evolution of the spectra clearly manifested the fast growth of the yellow
band and the peak wavelength gave rise to a blue shift from 580 to

536 nm. The enhancement of luminescence indicated the nano-ag-
gregates were well-formed. Upon the titration of HA from 0 to
0.3 μgmL−1, the maximum emission value could be reached in the
presence of 0.15 μgmL−1 of HA.

3.3. Detection of HAase

As given in Fig. S5, the chromaticity coordinate (0.351, 0.495) of
the prepared sample is located at the yellow light region. Therefore,
0.15 μgmL−1 of HA was chosen to add in TPE-4N+ solution (1 μM) for
the study of enzymatic reaction between HAase and HA. Firstly, the
kinetics of enzymatic reaction was performed by estimating the time-
dependent emission changes of TPE-HA with the 5 U/mL of HAase (Fig.
S6). The fluorescence intensities of TPE-HA were gradually decreased
and reached its minimum value within 100min upon addition of HAase
(5 U/mL). This effect showed that the enzymatic time is another sig-
nificant factor during the HAase detection [26]. Secondly, to ensure the
enzymolysis was carried out completely, the incubation time (100min.)
was employed in the following study. As shown in Fig. 4, the photo-
luminescence intensity of the TPE-HA decreased based on the in-
creasing concentration of HAase (0–5 U/mL) due to the disassembly of
TPE-HA. The emission intensity of TPE-HA was nearly quenched 90%
upon adding HAase (5 U/mL). The relative intensity of TPE-HA at
536 nm (F/F0) was decreased upon addition various concentrations of
HAase (from 0 to 5 U/mL) (F0 represented initial fluorescence emission
intensity of TPE-HA (TPE-4N+ 1 μM, HA 0.15 μgmL-1) in aqueous so-
lution, F represented fluorescence emission intensity of TPE-HA upon
addition various concnetrtions HAase). The linear regions were ana-
lyzed by two sections varying from 0.05 to 2 U/mL (y=0.009 −
0.418× (R2= 0.985)) and from 2.75 to 5 U/mL (y= 0.001 − 0.036×
(R2= 0.998)), respectively (Fig. 5). Using the first linear equation
(y= 0.009 − 0.418×), the detection limit for HAase was estimated to
be 0.02 U/mL according to the equation DL= 3 × SD/slope, where SD
is the standard deviation of the blank sample.

Fig. 2. (A) UV–vis spectra for TPE-4N+ (1 μM), TPE-HA (TPE-
4N+ 1 μM, HA 0.15 μgmL−1) and TPE-HA (TPE-4N+ 1 μM, HA
0.15 μgmL−1) + HAase (5 U/mL) in aqueous solution. (B) UV–vis
absorbance changes by gradually adding HAase (from 0 to 5 U/
mL) into TPE-HA (TPE-4N+ 1 μM, HA 0.15 μgmL−1) aqueous
solution (All the samples were incubated at 37 °C for 100min and
then subjected to the absorption measurements).

Fig. 3. Fluorescence emission spectra of TPE-4N+ (1 μM) in mixture of DMSO/
water with increasing fraction of water (The measurements were performed at
25 °C).
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3.4. Selectivity experiments

To study the selectivity of TPE-HA for HAase, fluorescence re-
sponses to other 13 kinds of representative species were examined. The
reference samples included GSH, Cys, Hcy, Glu, AA, ALP, UA, VB1, BSA,
CuCl2, FeCl3, ZnCl2 and MgCl2. As shown in Fig. 6, only the addition of
HAase induced a significant decrease of the emissive spectra at 536 nm.
All the other interference species have led to no extraordinary changes
and the variation in intensity was less than 5%. These results supported
that the TPE-HA probe was selective for efficient recognition of HAase
in aqueous solution. Therefore, this strategy of assembly-disassembly
based on AIE nanosensor could be potentially employed for monitoring
new targets.

3.5. Mechanism for the recognition of HAase in the sensing system

With the purpose of exploring the detection mechanism for the

HAase in the sensing system, the assembly and degradation of TPE-HA
nano-aggregates was characterized via zeta potential measurements.
The combination between TPE-4N+ and HA was further verified by
potential signal changes. Fig. 7 showed that the zeta potential of TPE-
4N+ (1 μM) was determined to be+8.1mV. On the contrary, the zeta
potential of HA (0.15 μgmL−1) was measured as −14.5 mV under the
same conditions. However, when HA (0.15 μgmL−1) was added into
the TPE-4N+ (1 μM) solution, the zeta potential of the system was
decreased to -4.8 mV, indicating electrostatic attraction between the
positively-charged TPE-4N+ and negatively-charged HA induced the
formation of aggregation. In the following step, HAase was in-
corporated into TPE-HA solution, the zeta potential of the system was
increased to+ 4.3mV, which further proved the degradation of TPE-
HA nano-aggregates [27–30].

To further clarify the sensing process, transmission electron micro-
scopy (TEM) of TPE-4N+, TPE-HA and TPE-HA + HAase were ex-
plored. As given in Fig. 8A, TPE-4N+ obtained in this study was
homogeneously dispersed in the form of ultra-small nanoparticles with
average diameter of 5.9 nm by selecting 100 samples (Fig. S7A). After
adding HA into TPE-4N+ solutions, the negatively charged HA can
react with TPE-4N+ to trigger the formation of the large aggregated
nanoparticles and regular spherical particles with the average diameter
of 170.5 nm were obtained (Fig. 8B and S7B). The morphology evolu-
tion indicated TPE-HA nano-aggregates were facilely established
through their electrostatic interaction. Moreover, the particle size

Fig. 4. Fluorescence emission spectra of TPE-HA (TPE-4N+ 1 μM, HA
0.15 μgmL−1) in aqueous solution after the addition of HAase (0–5 U/mL) (All
the samples were incubated at 37 °C for 100min and then subjected to the
fluorescence measurements). Inset: TPE-HA (TPE-4N+ 1 μM, HA 0.15 μgmL−1)
in aqueous solution excited by UV light at 365 nm without (left) and with
(right) HAase (5 U/mL).

Fig. 5. Plot of the relative intensity at 536 nm (F/F0) against various HAase
concentrations (from 0 to 5 U/mL), (F0 means initial emission intensity of TPE-
HA (TPE-4N+ 1 μM, HA 0.15 μgmL−1) in aqueous solution, F means emission
intensity of TPE-HA in the presence of different concnetrtions of HAase),
(Equation for blue line: Y refers to F/F0, X refers to concentration of HAase
(ranging from 0.05 to 2 U/mL); Equation for red line: Y refers to F/F0, X refers
to concentration of HAase (ranging from 2.75 to 5 U/mL)). All data represent
mean ± SD for three separate measurements. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article).

Fig. 6. Fluorescence responses of TPE-HA (TPE-4N+ 1 μM, HA 0.15 μgmL−1)
toward different potentially interference species. (The concentrations of GSH,
Cys, Hcy, Glu, AA, UA, VB1, BSA, CuCl2, FeCl3, ZnCl2 and MgCl2 are the same
(10.0 μM), ALP (0.1 U/mL), and HAase (5 U/mL). All the samples were in-
cubated at 37 °C for 100min and then subjected to the fluorescence measure-
ments).

Fig. 7. Zeta potentional of TPE-4N+ (1 μM), HA (0.15 μgmL−1), TPE-HA (TPE-
4N+ 1 μM, HA 0.15 μgmL−1), and TPE-HA (TPE-4N+ 1 μM, HA 0.15 μgmL−1)
+ HAase (5 U/mL) in aqueous solution (All the measurements were carried out
at 25 °C).
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distribution of TPE-HA was achieved in its dynamic light scattering
(DLS) histogram (Fig. S8). Interestingly, in the same reaction system,
the addition of HAase could promote the decomposition of the ag-
gregated nanostructures and the uniform particles with a diameter of
6 nm was found again (Fig. 8C and S7C). The results supported that the
enzymatic hydrolysis of hyaluronic acid could drastically change the
charge distribution of the sensor system and degrade the nano-ag-
gregates of TPE-HA [31–34]. HAase-controlled disassembly in water at
ambient temperature will offer an alternative and useful way for mi-
crostructure design of various nanocrystals.

3.6. Analyzing HAase in urine samples

To gain further insights into the practical applicability of TPE-HA,
urine samples spiked with fixed HAase concentrations were assayed.
Human urine specimens from two healthy people were collected and
analyzed to support its validity. Table S1 demonstrated the con-
centrations of HAase in urine samples for the normal healthy people
and the determined levels were much lower than the reported data for
the patients [28]. To investigate the recovery efficiency for the HAase
in urine specimens, the solution was added with appropriate amounts of
HAase (1.0, 2.0 and 5.0 U/mL) and the final measured concentrations
in all samples were given in Table S1. The average recoveries of HAase
were in the range of 97–108 % for all the spiked samples and low re-
lative standard deviation (0.95–1.08 %) was achieved. The collected
data will meet the requirement for future practical use. These new
findings may contribute to the assembly of novel molecular engineering
works that could be adaptable to the utilizations in real samples.

4. Conclusions

In this research, a highly sensitive and selective probe for the de-
tection of hyaluronidase has been achieved based on the AIE principle.
The sensing mechanism of TPE-HA towards HAase was established on
electrostatic interaction. The detailed processes were supported by the
zeta potential measurements, transmission electron microscopy and
particle size analysis. This new route for the quantitative determination
of HAase possesses a few advantages. As for the synthesis strategy, the
probe TPE-4N+ can be easily prepared within one step and no pains-
taking operation is needed. In addition, the detection of HAase can be
applied in aqueous solution or buffer environment. Furthermore, the
interference of HAase would be avoided. Therefore, it is expected that
this AIE-based nanostructure could be integrated into suitable hosts for

practical diagnosis and treatment of HAase-derived diseases.
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