登录

/

注册

首页 > 科技媒体 > 媒体详情
全球技术地图:中美航空航天科技实力对比
李明 2018-08-04
导语

综合来看,目前我国航天实力排名全球第四、仍处于第二梯队。相比航天,我国航空展现出来的技术与世界先进水平相比,差距更大,形势更为严峻。


本文以航空航天科技产业为例,具体对比中美科技实力;

1、航天科技

航空航天均是高端综合性工程技术、理论学科和实际应用的结合,其中航天科技可以分为空间技术、空间科学和空间应用。从整个产业链角度来看,空间技术集中在航天器制造和发射,空间应用集中在地面设备和运营应用,空间科学是基于两者去太空探索新知识,三者相互支撑相互依靠。

从政府活动(包括政策支持力度、预算开支情况、国际合作情况等)、人员和航天器(宇航员人数、相关学科大学及以上储备人才数量、在轨航天器数量等)、相关工业(制造能力、发射能力、地面操控能力等)这三方面能力进行评定,2017年我国航天实力指数为27.93,较2016年有所提升;美国航天实力指数为89.3居全球首位,但近年来有所下降。综合来看,目前我国航天实力排名全球第四、仍处于第二梯队。

一、空间科学:部分领域领跑全球,但整体较为薄弱

我国空间能力最为薄弱的是空间科学,从理论基础与研究手段两方面来看:

与航天相关性强的天文学与天体物理、物理学等基础研究较为薄弱。根据中国科学院科技战略咨询研究院《2016研究前沿》显示,从Essential Science Indicators(ESI)数据库的上万个研究前沿挑选出的共180个重点热点前沿为基础来分析10大学科中各国与所在国相关科研机构对重点热点前沿产出论文数量和论文影响力,在物理学的20个热点前沿领域美国引领数达到11个,中国仅2个;在天文学与天体物理的12个热点前沿领域,美国引领数达到10个,中国尚无斩获。

科学卫星是空间科学研究的重要基础和手段,我国科学卫星起步晚,成效方面不如美国。时间上,美国1958年发射的第一颗人造卫星即是用于研究探索的“探险者号”科学卫星;中国最早用于科学探测的是1971年发射的“实践”系列卫星。探测距离上,美国“探险者号”系列卫星已探测过整个太阳系相关数据,向银河系探测;中国目前探测最远的是基于嫦娥探月计划的月球,将于2020年左右施行火星探测计划。卫星数量上,据不完全统计,截止2017年,中国科学卫星数量约50颗,其中大部分是早期发射的“实践”系列卫星,美国方面则约180颗以上。2017年共发射的108颗科学卫星中,美国占了约18%,而中国约为4%。

二、空间技术:基本掌握核心技术,发展最为迅速

作为空间科学与空间应用的操作基础和实现手段,空间技术是三个环节最为核心的部分。从全球视角来看,近十年,我国的空间技术发展最为迅速、取得成效最为显著。

空间技术不单单指具体某项技术,而是囊括从火箭与航天器制造、航天器发射至航天器能稳定运行中涉及到的各项技术最有代表性的为重型火箭技术、载人航天技术、空间站技术与深空探测技术,从全球视野来看,我国是全球为数不多的能够独立实施登月计划、载人航天计划、天空站计划等,说明我国航天攻克核心技术数量多、涉及范围广;但与美国相比,我国需要在总体效率与质量上继续提升。由于载人航天、空间站与深空探测均需要以重型运载火箭技术为基础,下文以重型火箭技术为例具体分析我国的空间技术实力。

重型火箭是指具备发射低、中、高不同地球轨道,可以运载不同类型卫星和载人飞船,并且LEO载荷能力(近地轨道运载能力)超18吨以上火箭,具备该技术与否可以看做能否挤进航天强国的重要指标。目前全球现役的重型火箭包括长征五号(中国)、重型猎鹰(美国)、德尔塔4(美国)等。从整体性能与性价比来看,我国长征五号排全球第三。主要根据以下两方面来判断:

1)第一是整体设计能力。根据重型火箭运载能力要求,目前世界主流运用模块化组装法,把多级火箭类似搭积木的方法构建成一个大型的新的火箭,美国的土星五号、重型猎鹰与中国的长征五号等都是运用此法。在设计过程中涉及一项关键技术叫动特性获取技术。(注:即设计过程需要对火箭组成部分和结构在各种恶劣环境下,例如剧烈震动、冲击等,产生的变化进行数据分析)

相比其他航天强国,目前我国运载火箭动特性的获取比较传统,通过振动塔(试验火箭完整性的检测塔)全尺寸试验产生,检验周期长、费用高。以美国为例的其他航天强国,则逐渐通过等比例模型试验方式来推测实际尺寸的数据。这类方法需要有发展成熟的试验技术、严格的理论建模和先进计算机分析运算能力。我国也开始研究此类技术,但多在理论基础并无实际操作。

另一方面,我国在拟定的载荷能力对成本和可靠性把控上较为突出。火箭设计是整体概念,各国根据相应的经济和政策情况来设计最符合国情的方案。因此,在设计环节中,成本和执行复杂任务的可靠性也是检测火箭设计的合理性与优异性的重要指标。对比史上各大重型火箭,我国长征五号以较低发射成本和高达98%可靠性,显示出我国在这一环节的技术能力。

2)第二是整体动力系统。为了挣脱地球万有引力的束缚,根据牛顿第二和第三定律,火箭需要达到最小速度为7.9公里/秒。除了达到飞行速度要求,重型火箭要需要满足在多载荷情况下的上千吨起飞推力,从而考验各国对发动机的研发技术。测量发动机相关的核心指标可以分为运载能力与效率这两大类别。

运载能力方面,长征五号运载能力全球现役火箭第三,但运载系数并不算高。最大运载能力方面,包括LEO(近地能力)与GTO(地球同步轨道转移能力),其数值越大,表示运载物品越多能力越强。目前长征五号LEO运载能力为25吨,仅次重型猎鹰与德尔塔4号。运载系数方面,即最大有效载荷与起飞重量之比,数值越大,表明同重量的火箭能负载更多载荷,运载能力与效率更高。长征五号LEO运载系数仅为0.0288,与重型猎鹰的0.0451相距甚远,说明有效载荷能力与效率还是有段差距。

效率方面,长征五号燃烧效率和射程较高,但是推力效率较低。测量燃效与射程的指标为比冲,即单位推进剂产生的推力。比冲越高,发动机燃烧效率越高,射程也越远,长征五号YF-77发动机在这方面表现突出。推力方面,YF-77则逊色于美国几款重型火箭,推力的最大差距为土星五号的十分之一。但是YF-77的推力不足目前影响不大,因为完全可以满足长征五号设计的最大运载能力,所以整体可靠性不受影响。另一指标推重比,最大推力与重量之比,数值越大说明火箭整体效率越高,提高火箭干质比(火箭净质量与整体满载燃料质量之比)能力越强,利于火箭加速。我国的YF-77推重比约50,远不及美国几款发动机,是F-1一半,更是梅林1-D 的约30%,说明我国发动机性能与美国差距大,技术需要提升。

三、空间应用:中国发展迅速,美国增速放缓

空间应用是指以卫星应用为主(约占全球空间经济的80%),其他相关产业为辅的空间衍生服务产业。从卫星产业链来看,包括卫星制造与卫星发射的上游,与更聚集的卫星服务与地面设施的下游。据SIA的2018年全球卫星市场报告显示,2017全年卫星行业市场规模约2686亿美金,其中卫星服务达到1287亿美金,占比48%排为第一,地面设施1198亿美金,占45%为第二,两项总和超90%。美国收入占比持续多年超40%,但近年来增速放缓、占比有所下降,与此同时中国则以每年超20%的收入增速发展。

1)卫星制造与卫星发射:门栏高,参与者少,美国为第一垄断者

卫星制造与卫星发射对资金、人才、技术都具有高要求,全球参与公司或者政府部门约为30个,其中,欧美六大制造商占80%以上的市场份额。以GEO商业通信卫星制造订单为例,美国波音、劳拉、轨道ATK与洛马占62%,垄断过半市场。

卫星发射方面,美国无论在发射数量还是发射收入都遥遥领先。2016年全球共计发射90次约350颗航天器,其中美国以27%的发射数量和64%的发射收入居首,而中国发射数量与产值均5%,排名第三。

2)卫星服务与地面设施:中国具备后发优势

相比之下,卫星服务与地面设施门栏较低,拥有超1700家公司参与,市场规模庞大增长迅速。地面设施行业表现最为突出,市场规模从2012年的754亿美金涨至2017年的1198亿美金,全球四大卫星导航系统(美国GPS,欧洲Galileo,俄罗斯Glonass与中国北斗)逐渐完善成熟,卫星导航与物联网、5G、大数据等高新科技结合扩充带来的导航产业蓬勃发展是重要原因之一。以导航系统为例比较中国北斗与美国GPS:

技术上,北斗安全高效创新北斗是我国自主研发,无论军事还是民事方面均可实现安全、自主可控。北斗采取分布开通,即“发射部分先使用”,与GPS必须整体系统建成才能投入使用对比,更高效灵活。其次,对比GPS的双频信号,北斗使用三频信号带来更可靠与精准的定位能力,数据处理能力也进一步增强。其三,北斗拥有原创的短报文通信服务,适用于紧急情况下的位置文字通报功能。

市场规模上,北斗打破GPS垄断局面,但挑战GPS依旧困难。从全球视角来看,我国导航系统发展最为迅速,从2012-2015年市场份额占比提升4%;从国内视角来看,截止2017年底数据,我国卫星导航与位置服务产值达2550亿,增长20.4%,其中北斗对产业核心产值贡献率达80%,市场占有率提升至15%,但GPS依旧保持超80%市场份额。

▍2、航空科技

相比航天,我国航空展现出来的技术与世界先进水平相比,差距更大,形势更为严峻。

根据使用性质,航空飞机可以分为军用飞机与民用飞机。军用飞机方面,从数量来看,我国现役约4500架飞机,是美国现役军用飞机数量的33%,排名仅次于俄罗斯位于全球第三。从飞机种类来看,我国军用机种基本齐全,对比美国仅缺少在战略指挥机的布局。从优势机种来看,我国偏向战斗机与无人机,战斗机数量全球第三、无人机全球第二,这与本国国土防御为主的策略相一致;而美国以全球为目标安排布局,所以跨航运输能力强的加油机与运输机是美国航空称霸全球的资本之一,我国这两类机种暂时无法赶超美国。以运输机为例,美国运输机22个系列共998架,中国5个系列约100架,总量仅为美国的十分之一,其中18架伊尔76自俄罗斯购买。

民用飞机方面,我国现役共5593架飞机,约美国的二十分之一。运输机,即客运机方面,我国小型客运机自主化程度较高,但大型客运机基本全部依靠进口。通航飞机方面差距更大。通航飞机指民用除去商用运输以外的所有飞机总称,可以用于空中降雨、空中喷洒等。美国农业林业机械化程度高,对通航飞机需求大,我国目前尚处于人力与机械力交换过程,通航飞机存量较低。

造成上述军用飞机与民用飞机暴露的中美差异、制约我国航空发展的关键因素之一是航空发动机技术的发展。

对比航天发动机,航空发动机自主创新能力不强,新研制动力进程缓慢,现有发动机难以满足飞机日益增长的动力需求,动力多依靠进口。除了国外引进的飞机,我国现役超半成飞机使用国外或仿制改版的二代发动机,而这些发动机技术约为上个世纪八九十年代水平,在美国或其他航空发达国家基本淘汰。例如我国拥有最多的战斗机,直到近年涡扇发动机核心技术不断突破,自主研发的WS-10、WS-10B、WS-15等才逐渐替代俄制AL-31系列发动机。但四代动力仍在试行,量产通用还需2-3年。

其次,发动机产品系列不全,军用发动机不够先进,民用发动机则是空白。军用大推力发动机型号研制有短缺,整体性能与美国同类型相比差距较远。我国大推力涡扇发动机较成熟的WS-10系列,与美国F-110系列、俄罗斯AL-31F在推力上相差数十千牛,适用性较窄;四代的WS-15仍在试行,性能与美国新一代F-135较大差距。民用发动机关键技术尚未突破,大涵道比涡扇发动机研制尚处空白,全部依赖进口。大涵道比涡扇发动机适用于大型运载飞机,例如波音737、747系列,因为核心发动机无法自主研发,我国大飞机几乎全部引自波音与空客。直至去年自主研发C919试飞成功,才填补我国大飞机项目空白。剖析整体,我国攻克整体设计、气动外形、机身材料等100多项核心技术,拥有自主知识产权,但是动力系统来自美法合资CFM公司,尚无独立研制同水平发动机的能力。

3、差距原因:工业基础弱、资金投入少、人才缺乏和体制不成熟

通过分析我国航空航天与美国的对比,可以发现差距背后有以下深层次的原因:

1)工业基础薄弱,关键零部件需要进口。由于技术封锁,我国航空航天技术研发均是在困难条件下自主攻克的,即使吸收其他国家发展成功与失败经验,也无法弥补落后发展几十年的工业基础。例如航天级的FPGA(核心芯片)被国外Xilinx、Altera、Lattice等垄断,无法购买最先进版本。这也导致我国研发从立项到成熟落地周期,远远长于其他发达国家。

2)研发投入不够使得许多预先工作做得不深入不彻底,费用仅为美国的八分之一。从数据来看,无论是相对值还是绝对值,我国在航天航空预算方面都远不如美国。以航天为例,我国预算为美国的十分之一,如果加入美国国防航天部分的预算,则差距进一步扩大。此外,除了政府高额度拨款,美国航天事业约20%资金来源资本投资,占全球航天VC/PE的约65%。

3)专业人才缺乏。我国在专业人才的培育体系与人才支持上欠缺,从业人数差距更大。2016年我国航空、航天及设备制造业人数为35296人,而美国为617420人,相差十倍之多,与航天相关的服务业人数差距更大。

4)军民转化程度不高,无法有效市场化。以北斗导航为例,北斗开通仅五年对比美国二十多年发展,无论在设备稳定性、可靠性、实用性还是商业模式,都难在短时间内突破。

(本文来源:泽平宏观微信公众号,作者:任泽平等;)

如若转载,请注明e科网。

如果你有好文章想发表or科研成果想展示推广,可以联系我们或免费注册拥有自己的主页

  • 航空航天
分享到
文章评论(0)
登陆后参加评论
作者 李明

博士生

北京航空航天大学

活跃作者
  • 爱因斯坦 科研工作者 北京航空航天大学 博士
  • 金陵 本科生 北京大学 本科
  • 梅西 本科生 北京工业大学 本科


发布成功!

确 定 关 闭